
Sentry kernel
key concepts

A SECURE KERNEL FOR MICRO-CONTROLERS

PART 2: USER-KERNEL EXCHANGE
MODEL



Sentry is a microkernel
designed to minimize attack surface
simplify formal verification, and improve system security

Critical design choice:
no pointer passing between user space and kernel space

Why?
pointers may reference unsafe memory regions
leads to attacks or unauthorized access
Avoids complex validity checks (bounds, mappings)
Simplifies reasoning and formal proofs

Introduction



the svc_exchange concept
Sentry defines a per-task fixed memory region

known at compile time
called svc_exchange
used for transferring all non-scalar data between user space and
kernel space

Workflow
the task writes data into svc_exchange before issuing a syscall
kernel reads input from svc_exchange during syscall handling
For complex outputs, the kernel writes results back into
svc_exchange

Note: svc_exchange is ephemeral as its contents may be overwritten by the kernel



Strengths and Constraints
Advantages

stronger security: no arbitrary user pointers dereferenced
easier formal verification of syscall interface
stricter isolation: kernel does not need to permanently map user
data, only svc_exchange

Limitations
svc_exchange has a fixed, compile-time size
requires serialization/deserialization, adding overhead
large data transfers need alternative mechanisms (e.g., shared
memory regions)



Usage in Sentry and examples
All syscalls in Sentry avoid pointer arguments for complex data 

they rely exclusively on svc_exchange
Examples

Logging data sent from user space to kernel
Transferring structured requests with multiple fields

Developer considerations
Define data structures carefully for svc_exchange
Ensure at compile time the buffer is large enough for intended
usage

Note: SVC exchange usage aim to be abstracted through shield library over UAPI



Thank you !

https://github.com/camelot-os/sentry-kernel
https://sentry-kernel.readthedocs.io/en/latest/index.html


