
Frama-C usage in
Sentry kernel

FORMAL PROOFNESS FOR MICRO-CONTROLERS

PART 1: NORTE COVERAGE OF
KERNEL ENTRYPOINT

RTE == Run Time Error
OOB read or write accesses, data corruption, etc.
all Undefined Behaviors

Critical in various systems (medical, cyber-physical, etc.)

allows a first step toward effective correctness
once noRTE, behavioral verification can be made

noRTE ?

Coverage
All the kernel entrypoint, up-to the first user-space context switch

platform initialisation, kernel contexts initialization
coverage from reset handler

only backend asm replaced by stubbing
e.g. __ioread32() returning unpredictable volatile

STM32 kernel drivers included

And the hardware ?
kernel-level hardware IPs declared to
Frama-C as read-write areas
Using SVD files for automatic
predicates generation defining
registers access
driver’s I/O accesses assertions, based
on predicates

// generated predicate
predicate rcc_is_readable_register(ℤ r) = (
 r == 0x0 ||
 // [...]
 \false
);

/*@ assert rcc_is_readable_register(reg); */

What is verified ?
All Undefined behaviors using EVA plugin

overflows, div by 0 & invalid memory accesses using RTE plugin

using an over-approximation of environment for completeness
e.g. unpredictable registers values at each access

noRTE limited to mono-threaded mode, which is the entrypoint
mode

How is it integrated ?
Call to Frama-C in the Sentry kernel meson build system

Using generated compilation-database as input

All Frama-C entrypoints associated to dedicated executable()

Declarated as test() to allow the usage of the meson test subsystem

Frama-C execution added to a dedicated CI workflow

Results
Covering kernel production build, only with stubbed low level ASM

Other handlers (syscalls, ticker, faults) are covered by separated Frama-C
entrypoints, with the same principle

Covering 95% of the theorically reachable blocks
last 5% mostly unreachable defensive

No triggered Red Alarm (all RTE fixed), only false positives
e.g. task layout initialization

Thank you !
Special thanks to CEA-LSL team

https://github.com/camelot-os/sentry-kernel
https://frama-c.com/index.html

